1,705 research outputs found

    TCP over High Speed Variable Capacity Links: A Simulation Study for Bandwidth Allocation

    Get PDF
    New optical network technologies provide opportunities for fast, controllable bandwidth management. These technologies can now explicitly provide resources to data paths, creating demand driven bandwidth reservation across networks where an applications bandwidth needs can be meet almost exactly. Dynamic synchronous Transfer Mode (DTM) is a gigabit network technology that provides channels with dynamically adjustable capacity. TCP is a reliable end-to-end transport protocol that adapts its rate to the available capacity. Both TCP and the DTM bandwidth can react to changes in the network load, creating a complex system with inter-dependent feedback mechanisms. The contribution of this work is an assessment of a bandwidth allocation scheme for TCP flows on variable capacity technologies. We have created a simulation environment using ns-2 and our results indicate that the allocation of bandwidth maximises TCP throughput for most flows, thus saving valuable capacity when compared to a scheme such as link over-provisioning. We highlight one situation where the allocation scheme might have some deficiencies against the static reservation of resources, and describe its causes. This type of situation warrants further investigation to understand how the algorithm can be modified to achieve performance similar to that of the fixed bandwidth case

    Magnetization distribution in the transverse Ising chain with energy flux

    Full text link
    The zero-temperature transverse Ising chain carrying an energy flux j_E is studied with the aim of determining the nonequilibrium distribution functions, P(M_z) and P(M_x), of its transverse and longitudinal magnetizations, respectively. An exact calculation reveals that P(M_z) is a Gaussian both at j_E=0 and j_E not equal 0, and the width of the distribution decreases with increasing energy flux. The distribution of the order-parameter fluctuations, P(M_x), is evaluated numerically for spin-chains of up to 20 spins. For the equilibrium case (j_E=0), we find the expected Gaussian fluctuations away from the critical point while the critical order-parameter fluctuations are shown to be non-gaussian with a scaling function Phi(x)=Phi(M_x/)=P(M_x) strongly dependent on the boundary conditions. When j_E not equal 0, the system displays long-range, oscillating correlations but P(M_x) is a Gaussian nevertheless, and the width of the Gaussian decreases with increasing j_E. In particular, we find that, at critical transverse field, the width has a j_E^(-3/8) asymptotic in the j_E -> 0 limit.Comment: 8 pages, 5 ps figure

    Linear array optical edge sensor

    Get PDF
    A series of independent parallel pairs of light emitting and detecting diodes for a linear pixel array, which is laterally positioned over an edge-like discontinuity in a workpiece to be scanned, is disclosed. These independent pairs of light emitters and detectors sense along intersecting pairs of separate optical axes. A discontinuity, such as an edge in the sensed workpiece, reflects a detectable difference in the amount of light from that discontinuity in comparison to the amount of light that is reflected on either side of the discontinuity. A sequentially sychronized clamping and sampling circuit detects that difference as an electrical signal which is recovered by circuitry that exhibits an improved signal-to-noise capability for the system

    Non-Gaussian Resistance Noise near Electrical Breakdown in Granular Materials

    Full text link
    The distribution of resistance fluctuations of conducting thin films with granular structure near electrical breakdown is studied by numerical simulations. The film is modeled as a resistor network in a steady state determined by the competition between two biased processes, breaking and recovery. Systems of different sizes and with different levels of internal disorder are considered. Sharp deviations from a Gaussian distribution are found near breakdown and the effect increases with the degree of internal disorder. However, we show that in general this non-Gaussianity is related to the finite size of the system and vanishes in the large size limit. Nevertheless, near the critical point of the conductor-insulator transition, deviations from Gaussianity persist when the size is increased and the distribution of resistance fluctuations is well fitted by the universal Bramwell-Holdsworth-Pinton distribution.Comment: 8 pages, 6 figures; accepted for publication on Physica

    Grasp force sensor for robotic hands

    Get PDF
    A grasp force sensor for robotic hands is disclosed. A flexible block is located in the base of each claw through which the grasp force is exerted. The block yields minute parallelogram deflection when the claws are subjected to grasping forces. A parallelogram deflection closely resembles pure translational deflection, whereby the claws remain in substantial alignment with each other during grasping. Strain gauge transducers supply signals which provide precise knowledge of and control over grasp forces

    Exact solution of a two-type branching process: Clone size distribution in cell division kinetics

    Full text link
    We study a two-type branching process which provides excellent description of experimental data on cell dynamics in skin tissue (Clayton et al., 2007). The model involves only a single type of progenitor cell, and does not require support from a self-renewed population of stem cells. The progenitor cells divide and may differentiate into post-mitotic cells. We derive an exact solution of this model in terms of generating functions for the total number of cells, and for the number of cells of different types. We also deduce large time asymptotic behaviors drawing on our exact results, and on an independent diffusion approximation.Comment: 16 page

    Poisson Structures of Calogero-Moser and Ruijsenaars-Schneider Models

    Full text link
    We examine the Hamiltonian structures of some Calogero-Moser and Ruijsenaars-Schneider N-body integrable models. We propose explicit formulations of the bihamiltonian structures for the discrete models, and field-theoretical realizations of these structures. We discuss the relevance of these realizations as collective-field theory for the discrete models.Comment: 15 pages, no figures; v2 references added, typos correcte
    • …
    corecore